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FOREWORD 

This evaluation was conducted by the Westinghouse Astronuclear Labora- 
tory under NASA contract NAS 3-2540, Mr. P. E. Moorhead, of the Lewis 
Research Center Space Power Systems Division, was Project Manager for the 
program. M r .  G. G. Lessmann was  responsible for performance of the pro- 
gram at the Westinghouse Astronuclear Laboratory. 

quirements of Task VI of contract NAS 3-2540. Additional comprehensive in- 
vestigations which were conducted as a part of this program are the subjects 
of additional reports. The final reports for this contract are the following: 

The objectives delineated and results reported herein represent the re- 

I - Weldability of Refractory Metal Alloys (CR-1607) 
0 - Long-Time Elevated Temperature Stability of Refractory Metal 

I11 - Effect of Contamination Level on Weldability of Refractory Metal  

IV - Post Weld Annealing Studies of T-111 (CR-1610) 
V - Weldability of Tungsten Base Alloys (CR-1611) 

Alloys (CR-1608) 

Alloys (CR-1609) 

Additional salient features of this program have been summarized in the 
following reports: 

G. G. Lessmann, ?'The Comparative Weldability of Refractory Metal 
Alloys, '' The Welding Journal Research Supplement, Vol, 45 (12), 
December, 1966. 

G. G. Lessmann and R. E. Gold, "The Weldability of Tungsten Base 
Alloys, '* The Welding Journal Research Supplement. 

D. R. Stoner and G. G. Lessmann, "Measurement and Control of Weld 
Chamber Atmospheres, '' The Welding Journal Research Supplement, 
Vol. 30 (8), August, 1965. 

G. G. Lessmann and D. R. Stoner, "Welding Refractory Metal Alloys 
fo r  Space Power System Applications, f t  Presented at the 9th National 
SAMPE Symposium on Joining of Materials for Aerospace Systems, 
November, 1965. 
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D. R. Stoner and G. G. Lessmann, '?Operation of 10-l' T o r r  Vacuum 
Heat Treating Furnaces in Routine Processing, 1 7  Transactions of the 
1965 Vacuum Metallurgy Conference of the American Vacuum Society, 
L. M. Bianchi, Editor. 

G. G. Lessmann and R. E. Gold, "Thermal Stability of Refractory 
Metal Alloys", NASA Symposium on Recent Advances in Refractory 
Metals for Space Power Systems, June, 1969. 

D. R, Stoner, "Welding Behavior of Oxygen Contaminated Refractory 
Metal Alloys, 1 t  Presented at Annual AWS Meeting, April, 1967. 
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1. INTRODUCTION 

This report summarizes results of weldability studies sponsored by the National 

Aeronautics and Space Administration, Space Power Systems Division. These studies comple- 

ment a series of  programs designed to upgrade refractory metal technology in terms of  space 

power system requirements. Contemplated systems would provide either direct conversion of 

thermal to electric energy as with thermoelectric or thermionic devices or mechanical con- 

version using Rankine or Brayton cycles. The major design objective of  high thermal efficiency 

with minimum system weight is  approached by designing for maximum operating temperatures. 

Application of tungsten or tungsten alloys seems to offer the ultimate potential in this respect 

because tungsten has the highest melting point of all metals, 6170 F. On the negative side, 

tungsten has a ductile-to-brittle transition temperature which i s  well above room temperature 

for recrystallized or cast (weld) structures. Hence, considerable reserve must be exercised 

in the application of this metal in fabricated structures typical of those required for space 

power systems. 

0 

This weldability study was designed to lend further definition to the general problems 

which would be encountered in fabrication o f  tungsten, or tungsten alloy structures by 

welding. Stimulus for this evaluation was provided by the introduction of alloys of improved 

ductility such as the binary W-Re or ternary W-Re-Mo alloys, Further, techniques to convert 

these alloys from arc cast ingots have been recently developed. Arc cast material has 

historically demonstrated greater fabricability than powder metallurgy product. Hence, the 

availability of  arc cast material provided an additional incentive for initiating this welding 

study. 

1 



The basic objective of  this program was to define the weldability of tungsten and 

its alloys in terms comparable to those employed in evaluating other refractory metal alloys 

(Cb or Ta based) which are prime candidates for space power system applications.") The 

alloys of current interest in this respect are W-25w/oRe and W-25Re-30Mo (a/o). These 

were evaluated for the first time in this program as material converted from arc cast ingots 

along with arc cast unalloyed tungsten. The ternary alloy was also evaluated as a powder 

metallurgy product. The primary factors evaluated were: 

' 0 Basic weldability of sheet material using the gas tungsten arc and 
electron beam processes. 

0 

0 

0 

0 

0 

The effect of weld atmosphere control on basic weldability. 

The effect of weld preheat to 140OOF. 

The importance of  joint preparation. 

The effect of post weld annealing. 

The effect of long time-high temperature thermal exposure. 
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II. TECHNICAL PROGRAM 

ALLOYS 

The unalloyed tungsten and the tungsten alloys evaluated in this program are listed 

below along with their respective melting points and densities. 

Me1 ting Point (OF) Density (I b/in 3 ) 

Una1 loyed Tungsten 61 70 0.697 

W-25w/oRe* 5650 0.71 4 

W -25Re-30Mo (a/o)** 5270 0.651 

The unalloyed tungsten and the binary tungsten-rhenium alloy were evaluated solely as 

arc-cast (AC) sheet while the ternary tungsten-rhenium-molybdenum alloy was evaluated 

both as arc-cast (AC) and powder-metallurgy (PM) sheet. Evaluation of arc cast material 

was emphasized because init ial welding results on una1 loyed tungsten showed that porosity 

free welds could only be made in arc cast material. Further, the general trend in refractory 

metal technology has historically been towards arc cast material for higher purity and 

greater fabricabil ity. 

The phase diagrams pertinent to these alloys are shown in Figures 1, 2, and 3. In 

Figure 3 the 183OoF (lOOO°C) isotherm for the W-Re-Mo ternary is  shown. The location of 

the alloy Composition used in this study is indicated. From these diagrams i t  i s  seen that both 

the binary and ternary alloys are nominally single phase but l ie quite near the limiting solvus 

I ines. 

The binary W-Re and &-Re diagrams are quite similar. From the standpoint of 

weldabil i ty  however, a very important difference exists. W-Re alloys with compositions in 

the a-phase region would be expected to be subject to considerably more constitutional 

* 
** 

Designated W-25Re hereafter. 

The conventional designation of this alloy i s  given in a/o and wil l  be used in that way throughout 
this report. The composition in W/O i s  W-29.5Re-18.2Mo. 

3 
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segregation than would similar Mo-Re alloys. This follows from a direct comparison of the 

temperature range through which the metal must cool as it solidifies. Freezing point depression 

of  the binary W-Re alloy would be expected to be pronounced in rapidly solidified cored 

weld structures. These phase relationships imply that the W-Re-Mo system should experience 

considerably less segregation than the binary W-25Re alloy. This i s  based on the very 

narrow liquidus-solidus separation in the binary &-Re alloy for the ternary solute ratio 

(&)%Re). Data presented later in this report tends to substantiate this expectation. 

The interest in the binary W-Re alloy results from the well-known but poorly under.- 

stood ''rhenium ductilizing effect." This effect i s  not limited to W but has also been seen 

for Re additions to the other Group VIA metals, molybdenum and chromium. A recent reciew 

of  this effect by Klopp@) indicates the general lack of understanding of the mechanism(s) 

involved. Based on experimental evidence several conclusions seem indicated: 

0 Re additions to Group VIA metals such as tungsten promote twinning as 
a major means of  deformation. This implies a significant reduction in 
the normally high stacking fault energy of these metals. 

0 Some change in the morphology and/or distribution of interstitial 
compounds, particularly oxides, occurs. This would appear to be 
important since Stephens(6) has shown that the DBTT for pure W rises 
rapidly with oxygen content, the fractures being invariably inter- 
granular. 

The ternary W-Re-Mo alloy i s  a more recently developed material.(4) Molybdenum 

additions to the W-Re binary alloys are attractive for several reasons. The ternary, with 

molybdenum replacing tungsten, i s  less expensive to produce and has a lower density than 

either W or W-Re binary alloys. However, the melting point i s  considerably lower and as a result 

the long-time high temperature strength i s  somewhat less than that of the higher melting 

binary alloys. 
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The short time strength properties determined for the ternary alloy are compared with 

typical values for arc cast tungsten and W-25Re in Figures 4 and 5.  Data relating the 

corresponding tensile elongations are listed in Table 1 .  Up to 3O0O0F, the highest test 

temperature used, the differences are not very significant but for higher temperatures i t  i s  

expected the t c r m r ~  alloy v i o ~ l d  mt. continue io be competitive with the higher melting 

W-25Re and una1 loyed tungsten. 

Bend ductility (4t bend radius) of the as-received alloys i s  shown in Table 2 along 

with notes regarding the as-received structures. Interstitial chemical analyses are provided 

in Tgble 3. It i s  important to note that al l  of these metals have quite low solid solubilities 

for the interstitial elements. Hence, segregation of interstitials often occurs at grain 

boundaries and other regions of high disregistry in the lattice. This resultant segregation 

i s  thought to be responsible, in part, for the characteristic grain boundary-nucleated fractures 

so prevalent in these materials. 

An unambiguous definition of the factors which control brittleness in tungsten and i t s  

alloys has not been achieved. However, it i s  well known that wrought, stress-relieved 

structures possess significantly greater ducti l i ty than that o f  recrystallized structures. This 

advantage has led to the widespread use of tungsten-base materials in the wrought, stress- 

relieved condition. This i s  the reason the materials used in this study were stress relieved 

rather than recrystallized. The influence of structure on ducti l i ty adds importance to the 

aging studies which were conducted to assess the effects o f  long time-high temperature 

thermal exposures on structural stability. 



1 oc 

9c 

80 

70 

;L" 60 

f 

? 

2 50 

0 

& 

v, 

[I 
P) 

I- 
P) + : .- 
L - 

40 

30 

20 

IO 

I I I I I I 

\ 
\ 

W-25Re-30Mo (0.0) __ 
A Powder Met. Base Metal 

V Powder Met. E6 Welds 

b Powder Met. GTA Welds 
A Arc Cast Base Metal 

Arc Cast EB Welds 

W -25w/oRe ' \  \ 

A 

I I I I I 

2000 2200 2400 2600 2800 3000 

Temperature, O F  

FIGURE 4 - Elevated Temperature Ultimate Tensile Strength of Tungsten-Base Alloys 

9 



I I 1 I 1 I 

\ W-25Re-3OMo (a '0) 

A Powder Met.  Base Metal 

B Powder Met.  E6 Welds 

Powder Met.  GTA Welds 
A Arc Cast Base Metal v 

Arc Cast E B  Welds 

I I I I I I 
2200 2400 2600 2800 3000 2000 

Temperature, O F  

FIGURE 5 - Elevated Temperature Offset Yield Strength of Tungsten-Base Alloys 

10 

, 

1 



TABLE 1 - Tensile Elongation Data for Tungsten-Base Alloys 
Percent Elongation in 1 Inch Gage Length 

12 

5 

1 Alloy 

23 30 

16 30 

I 2000°F I 2600'F I 300OoF 

Base 

I AC Tungsten 

54 36 33 

I AC W-25w/oRe 

GTA 

~ 

PM 
W-25Re-30Mo 

b / O )  

37 23.5 18 

AC 
W -25Re-30Mo I b / O )  

Base 

EB 

9 32 79 

15 17 61 

E6 I 33 1 26.5 I 25 

~~ 

AI I base metal data for wrought, stress-relieved sheet. 
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TABLE 2 - Base Metal Bend Ductil i ty 

AS-RECEIVED 4t BEND DBTT 

METAL/ALLOY LONG. TRANS. C O N  D IT1 ON 

AC TUNGSTEN 425OF 275' F S.R. 1 HR. - 170OoF 

AC W-25Re (w/o) -200' F -75' F S.R. 1 HR. - 2550°F 

PM W-25Re-30Mo (a/.) -150OF -50" F S.R. 1/2 HR. - 210OoF 

AC W-25Re-30Mo (a/.) <-320°F -25OoF S.R. 1/2 HR. - 192OoF 

. . 

AI I as-received material was in the wrought condition. 
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An interesting feature of the interstitial analyses of Table 3 i s  that, for the ternary 

alloy, the oxygen and nitrogen contents of the PM product are lower than those of the AC 

product. This i s  contrary to the normal relationship and reflects the fact that this alloy 

was originally developed as a PM product and evolved from a program which had as one 

of i t s  major goals the development of  technlqnes for obtaining extremeIy low interstitial 

impurity levels in tungsten and molybdenum alloy powders. The data in Table 3 attest to 

the efficiency of  these procedures. A similar comparison was not made for metallic impurities 

but it i s  expected these would be somewhat lower in the AC sheet by virtue of  the purifica- 

tion which occurs during vacuum arc melting. 

14 



ALLOY WELDABILITY 

Basic Considerations. Weldabil i ty  o f  tungsten and tungsten alloy sheet was investigated 

by evaluating responses to electron beam and gas tungsten arc welding over a wide para- 

meter range. This approach provides a del ineation of alloy sensitivity to processes variations 

and a definition of weldability limitations. 

The primary welding variable in this respect i s  welding speed. Weld speed i s  the 

controlling factor in unit weld length heat input for achieving a given target weld size as 

shown graphically in Figure 6.  The significant effect of weld speed is  obvious in this figure. 

Heat input i s  nearly a function of l/v or the dwell time of  the arc. At slower speeds a small 

decrease in speed causes a large increase in heat input consequently increasing the magnitude 

of  the thermal disturbance. This effect would seem to be most important from a metallurgical 

standpoint. On the other hand, higher weld speeds can be considered to represent a greater 

thermal shock. In some materials the magnitude of the thermal disturbance plays the most 

significant role in establishing weldability limitations while in others thermal shock i s  the 

overriding consideration. Due to the brittle nature of the materials evaluated in this program, 

thermal shock played a more important role in defining weldability. 

Electron beam welding provides a minimum sized weld and hence minimurn heat input 

throughout the welding speed range. This i s  also shown in Figure 6. Frequently, minimizing 

weld size i s  beneficial in improving weld properties, but l ike higher speed GTA welding, 

minimizing heat input characteristically increases thermal shock. Again, this proved to be 

important in welding tungsten alloys as described later in this report. Hence, by employing 

both the GTA and EB welding processes in this study, extremes of both the thermal disturbance 

and thermal shock effects of welding were evaluated. 

15 
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A further interesting feature of the heat input requirements developed in this program 

is  the decrease in heat input for the higher solute content alloys (also lower melting point 

alloys). Hence, while the advanced tungsten alloys were developed for improved ducti l i ty 

alone, from a welding standpoint both improved ductility and lower thermal shock can 

potentially combine in these alloys for improved weldability. Decreased thermal shock in 

the alloys results from the lower heat input requirement (at a given weld size and welding 

speed) coupled with the lowered me1 ting point. This combination decreases the instantaneous 

thermal gradient during welding. 

Welding Procedures. Al l  gas tungsten arc welding was conducted in a very pure, 

precisely control led, he1 ium environment employing the vacuum purged weld chamber shown 

in Figure 7. The welding atmosphere was monitored during welding so that oxygen and 

moisture levels were always maintained at less than 5 ppm. The method o f  achieving and 

maintaining these purity levels was described in detail in previous papers. (' '7) During 

this investigation the importance of providing a high quality welding atmosphere for welding 

tungsten alloys was demonstrated. This aspect i s  discussed under the heading of "Hot Tearing" 

in the Results section of this report. Al l  gas tungsten arc welding was accomplished using 

straight polarity DC current. 

Electron beam welding was accomplished using a Hamilton Zeiss 2 KW-150,000 volt 
-5 

welder. A vacuum of 10 torr or less was employed for welding. Basic process variables 

evaluated included selected beam deflection patterns and clamp spacing as well as welding 

speed. 

Either butt welds or bead-on-plate welds were used in this study. Geometric effects 

in welding narrow specimens dictated that most  of the welds produced in this evaluation be 

bead-on-plate welds to conserve material. Hence, results in the weld evaluation are largely 

independent of  joint preparation. However, the effect of joint preparation on the soundness 

of welds was separately evaluated. 

17 
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Weld Preheat. As described above, the general philosophy pursued in  welding these 

alloys was that of treating the welding process as a thermal disturbance, the time-temperature 

relations of which are controlled by the weld parameter selection. Thermal shock proved to 

play a significant role in  defining weldability o f  tungsten and i t s  alloys. Consequently, 

weld preheat up to 1400 F was introduced as a variable into the welding study. Since 

14OOoF appeared to be above the ductile-to-brittle transition temperatures of both base and 

weld metal, preheat was selected as a means of providing increased flexibil i ty in weld para- 

meter selection. The preheat fixture designed for this purpose is  shown in Figure 8. This 

fixture was designed for sheet welding. The weld specimen i s  held i n  place with clamp 

down bars containing molybdenum inserts. The back-up bar i s  also of  molybdenum. The 

fixture heater i s  located in a cavity behind the molybdenum back-up bar. Clamp bars, 

back-up bar, and heater support are insulated from the bulk of  the heater so that a maximum 

specimen temperature of  1500 F can be achieved. 

0 

0 

Post Weld Annealing. Post weld annealing was evaluated as a means of  improving 

ducti l i ty of welds for a l l  the material evaluated. Annealing was accomplished in diffusion 

pumped vacuum furnaces at a vacuum of ( 5  x 10 

and 320OOF. Holding times of  1 hour were employed for a l l  anneals. 

-5 
torr and temperatures between 250OOF 

Thermal Stability. The thermal stability of welds in both powder metallurgy and arc 

cast W-25Re-30Mo was determined by aging for 1000 hours in ultra-high vacuum furnaces 

at temperatures o f  2600, 2800, and 300OOF. The sputter-ion pumped furnaces used for this 

purpose are shown in Figure 9. These units are capable of  maintaining (10 torr pressure 

at temperature. Pressures tend to continually decrease during aging runs such that final 
-9 

pressures are 610 torr. 

-8 
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FIGURE 8 - Sheet Welding Fixture Used for Welding Tungsten-Base 
Alloys with Preheat to 140OoF 
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Weld Evaluations. Al l  welds made in this program were checked for basic quality 

using visual, dye penetrant and radiographic techniques. 

The primary mechanical method of  evaluation was bend testing using a 4t bend radius 

(1 1% outer fiber strain). Bend testing was used to define the bend-ductile-to-brittle 

transition temperature for weld specimens taken in both the transverse and longitudinal 

directions. The bend test parameters and specimen orientations are defined in Figure 10. 

Transverse specimens were oriented for bending with the weld axis at a slight angle to the 

punch axis to assure the entire weld transverse cross section would be subjected to bending 

rather than merely the weakest areas. Load-deflection curves were generated during each 

bend test and bending was terminated when crack initiation was indicated by an abrupt 

load decrease. This permits measuring, or calculating, the bend angle achieved at the 

moment of crack initiation as well as identifying the location of crack initiation. Normally 

four specimens are required to define a transition temperature. Bend test data are recorded 

graphically as shown in Figure 11. This method of presentation identifies al l  the pertinent 

data including crack location and extent of crack propagation for each specimen as well as 

the transition curve defined by the bend angle achieved as a function of temperature. 

Longitudinal and transverse curves are coded for presentation on the same graph. Bend 

testing was conducted at temperatures up to 1000 F, the test fixture operating l imi t .  Some 

anomalous results were noted when the rhenium containing alloys were tested in air above 

600 F. This was attributed to the tendency of rhenium to form low melting oxides demon- 

strating that an inert shield gas should be employed in bend testing these alloys. The 

expanded discussion of this general problem i s  included in the discussion of results under the 

heading of "Hot Tearing." 

0 

0 

i 

A restricted amount of tensile testing was conducted using longitudinal GTA and EB 

weld specimens and base metal of the W-Re-Mo alloy. This data was presented in Figures 4 

and 5. Tensile tests at elevated temperatures were conducted at strain rates of 0.05 in/in/min 
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NOTE: ARROWS SHOW ROLLING DIRECTION 
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LENGTH = 24t 
TEST SPAN - 15t 
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PUNCH RADIUS - VARIABLE, GENERALLY It, 2t, 41, or61 

BEND DUCTILE TO BRITTLE TRANSITION TEMPERATURE = 
LOWEST TEMPERATURE FOR 9oo + BEND WITHOUT CRACKING 

i 

FIGURE 10 - Bend Test Parameters 
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while room temperature tests were run at 0.005 in/in/min to the 0.6% offset yield point and 

then at 0.05 in/in/min to failure. Weld specimens were ground flat and parallel. A 1.000 

inch long by 0.250 inch wide gage length was employed. 

Specimen Preparation. The tungsten alloys did not lend themselves to convenient 

specimen blanking because of generally poor ductility. As a result weldment specimen 

blanking throughout this program was accomplished by electro-discharge machining. 

Following welding, bend and tensile specimens were blanked using a wet cut-off wheel. 

Tensile specimens and butt joint edges were finish machined by grinding. All specimens 

were pickled before welding, annealing, aging or testing above 1000 F. A l l  other specimens 

(bend) were degreased prior to testing. Selection of the pickling procedures i s  discussed 

in theResults section of this report since proper pickling techniques are necessary to avoid 

excessive weld porosity. 

1 

0 
t 

25 



1 1 1 .  RESULTS A N D  DISCUSSION 

The complete results of the basic weldability study for unalloyed tungsten and for the 

arc cast W-25Re alloy are presented in one of the companion volumes of the final report series 

on Contract NAS 3-2540 (’). Hence, the complete weld parameter records for these materials 

are not repeated in this section but are rather included in the Appendix. For the sake of COR- 

sistency and convenience in reading the weld parameter data for a l l  alloys under discussion are 

presented in the Appendix in tabular form along with complete bend test data plots. 

BAS IC WE LDABl L ITY 

Weld parameters, weld inspection results, and bend transition temperatures for 

al l  welds produced in  screening the four materials for basic weldability are summarized 

in Tables 4 and 5. All the variables investigated are indicated. Extreme care was 

taken to hold all other possible variables constant, This included electrode configuration, 

arc gap, shielding gas, edge preparation and clamp spacing i n  GTA welding, and beam 

focus and voltage in EB welding. 

Weld size was treated as a general variable in GTA welding and target weld 

sizes were selected. Since any particular application would require a particular weld 

size, and since heat input i s  a function of weld size, size was considered an important 

metallurgical variable. In electron beam welding, however, weld size (width) i s  a much 

more independent variable which i s  usually held as small as possible. Hence, EB weld 

size was not treated as a practical vcriable. 

in EB welding but was held constant in GTA welding. 

Clamp spacing was treated as a variable 

EB welding speeds were higher than those used for GTA welding as i s  normal. 

Although higher weld speeds were attempted in GTA welding,the lower speeds were 

necessarily favored in an effort to increase the probability of obtaining sound welds. 

Hence, the indicated parameters reflect a chronological adjustment of the original 

plan which was sensibly altered as the evaluation proceeded, 
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Target 
Weld  
Size 

Sound Weld 4 t  Bend Transition Temp. in O F  indicoted 

0 Defect ive Weld 

for long. (L)  and trans. ( T )  bends. 

TABLE 4 - GTA Weld Parameter Evaluation 
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I Clamp Spacing, in. I 0 Sound Weld 
~~ 

4t Bend Transition Data in O F  indicated for Transverse, (T), and Longitudinal, (L), Test Specimens 

TABLE 5 - E B  Weld Parameter Evaluation 
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Weld No. 1 
Speed - 15 iprn 

- 
_--- 

?-------- -- 

-re- 

Weld No. 4 
Speed - 15 ipm 
3.24 Ki lojoules/inch 

Weld No. 7 
Speed - 50 ipm 
1.19 Kiloioules/inch 

Weld No. 10 
Speed - 15 ipm 
3.1 2 Ki loioules/inch 

Weld No. 1 1  
Speed - 50 ipm 
1.30 Kiiojoules/inch 

Weld No. 12 
Speed - 100 ipm 
0.76 Ki lojoules/inch 

FIGURE 12- Typical Dye-Penetrant Results of Electron Beam 
Welds in Arc Cast Una1 loyed Tungsten Sheet 
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13,595 80X 

FIGURE 13 - Typical Section of Electron Beam Weld in Unalloyed Tungsten 
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The types of defects which occurred varied considerably for the four alloys: 

Arc cast unalloyed tungsten welds failed apparently CIS a result of brittleness 

and hence inability to accommodate weld stresses. EB welding produced the 

most dramatic failures which included delamination of adjacent base metal 

as well as transverse cracks and fractures, Figures 12 and 13. The EB 

delaminations are apparently the result of the high thermal shock developed 

i n  this welding processo High preheat (140OOF) improved GTA weldability 

part iculaly as indicated by the ability to produce larger welds at higher 

speed. Weld fractures of the type indicated were the only types of defects 

detected i n  welding unalloyed tungsten. 

Arc cast W-25Re, like unalloyed tungsten was GTA welded with difficulty. How- 

ever, i t  was readily EB welded. GTA welding became increasingly diff icult with 

higher welding speeds. Transverse arrested cracks (weld and heat affected zone 

only) occurred i n  one 15 ipm weld and in three 30 ipm welds. One 7.5 imp weld 

contained a centerline crack which may have been a hot tear. Such cracks were 

also observed in welding a circular bead-on-plate patch test specimen in  this 

alloy. The 140OoF preheat proved advantageous in  this respect with only one 

short starting tear developing in  a 15 ipm weld. There was no need to evaluate 

preheat for EB welding of this alloy because of the excellent weldability displayed. 

The powder metallurgy W-Re-Mo alloy displayed excellent weldability using both 

the GTA, Figure 14, and EB welding processes with only one minor starting crack 

occurring i n  one GTA weld. 

The arc cast W-Re-Mo behaved in  a very anamolous manner by hot tearing, Figure 

15, and developing transverse cracks during GTA welding. Although EB welding 

was satisfactory, this material was essentially unweldable by the GTA process. 

This was unexpected and this problem was given special attention as discussed ,later. 
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FIGURE 14- Bead-on-Plate GTA Welds on 0.030 Inch Powder 
Meta I lurgy W-25Re-30Mo AI toy Sheet 
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SUPPLEMENTAL W ELDABl L ITY RESULTS 

The other important features of basic weldability evaluated i n  this program are 

discussed below. These included the effect of weld parameters on as-welded ductility, 

the effect of weld preheat, the effect of post weld annealing, a comparison of edge 

preparation methods (pick1 ing solutions) and porosity i n  arc cast vs. powder metallurgy W-Re- 

Mo 9.1 l o p  

The effect of weld parameters on the ducti l i ty of welds as measured by the 

bend transition temperature has been summarized as part of the basic 

weldability data in Tables 4 and 5. Bend test results were ccrefully reviewed 

but no correlation was established based on a thermal response analysis as 

previously accomplished using a simi l  ar approach for evaluating columbium base 
alloys (1) In this study failure to achieve a satisfactory correlation i s  ascribed 

to the nominal variability o f  properties associated with the brittleness and/or 

hot tear sensitivity of these materials. From a statistical standpoint these materials 

can be expected to behave inconsistently. Hence, a much greater sample 

i s  required to achieve a meaningful correlation than required with readily 

weldable materials. 

The variation of weld preheat, l ike the other weld parameters, was ineffec- 

t ive in demonstrating a definite trend in controlling as-welded ductility. 

However, as previously described, preheat was very instrumental i n  

improving weldabil i ty  (i.e., preheat enhanced flexibil i ty i n  terms of 

insensitivity of weld quality to variation of the conventional welding 

parameters). This advantage was realized most effectively with the 140OoF 

preheat. 

Preheat i s  not required for GTA welding W-25Re-30Mo i f  the welding 

characteristics of the powder metallurgy alloy can be consistently realized. 

On the other hand, not even preheat was beneficial in GTA welding arc 

cast W-25Re-30Mo. 

t 
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W -R e - Mo 
(PM) 

b 

W-Re-Mo 
(AC) 

( I )  Bend Type: (L) Longitudinal, (T) Transverse 
( 2 )  DBTT foi- annea led  or unannealed, whichever is lower 

Base Metal  --_ 2800 4 125 ( L )  -150 
+ 175 (T) -75 

2400 t50 ( L )  +200(T)  ( L )  150 
E B  Welds 1 400° F 2800 +50 ( L )  1250(T) (T) 200 

3200 +lo0 (L )  +250(T) 

TABLE 6 - Post Weld Annealing Results 
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Preheat i s  not beneficial for EB welding the tungsten alloys but i s  probably 

necessary for EB welding unalloyed tungsten and i s  preferred for GTA 

welding tungsten. Preheat for GTA welds in W-25Re i s  necessary only with 

high welding speeds, 

The effect ef p a :  weld annealing as G method d imprn~lng as-we!ded 

ductility i s  summarized in  Table 6. Unalloyed tungsten was evduated with 

a 1 hour 256OOF GTA weld stress relief only without realizing any benefit. 

The same anneal on W-25Re was quite effective for EB welds but ineffectual 

for GTA welds. This was interpreted as indicating that a stress relief of EB 

welds i s  desirable, This also indicated that residual stresses are not the 

controlling factor i n  GTA weld ducti l i ty impairment. However, W-25Re 

GTA weld ducti l i ty was improved with a 327OoF anneal, This temperature 

was selected for solution of non-equilibrium sigma phase which could be 

responsible for ducti l i ty impairment. Even though sigma phase was not 

detected metallographically, i t s  presence as a continuous or semi-continuous 

grain boundary or intercellular film in  welds can be inferred from the 

intergranular nature of the fracture observed and from the improved ducti l i ty 

realized with the high temperature anneal. 

Powder metallurgy W-Re-Mo welds were improved by annealing i n  the stress 

relief and potentially sigma forming range, 2400 and 2800 F, but not in the 

recrystal I ization-sigma solution range, 3200 F. Hence, development of sigma 

phase did not appear to be a problem with this alloy. Arc cast W-Re-Mo, which 

had better as-welded ducti l i ty (EB welds only) than the powder metallurgy sheet, 

decreased in ducti l i ty on annealing to about the same final level as annealed 

powder metallurgy welds. Hence, these two materials merely seemed to 

normalize through the thermal stability study as discussed later. Annealing 

naturally has a detrimental effect on wrought base metal as indicated for the 

W-Re-Mo alloy annealed at 28OO0F. 

0 

0 
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18,7670 75x  

18,770D 75x 

FIGURE 16 - Center Areas of GTA Welds in W-25Re-30Mo Sheet Showing 
Effect of Pickling Solution Used for Joint Preparation. Top: 
Prepared Using 30 Lactic-3HNO -1 HF (Vol. Ratio). Bottom: 
Prepared Using 9HF-1 HN03 (Vo?. Ratio). 
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19,006 Weld - HAZ 400X 

Powder Metallurgy W-25Re-30Mo 

19,66 1 Weld - HAZ 400X 
Arc Cast W-25Re-30Mo 

FIGURE 17 - Comparison of Typical Porosity Levels in GTA Welds 
in PM and AC W-25Re-30Mo Al loy Sheet 
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Pickling solution selection proved to have a significant influence on the 

occurrence of porosity i n  the W-25Re-30Mo alloy. The developer of this 

alloy recommended using a volume ratio solution of 30 lactic-3 "03 - 1 HF. 
This was compared with the 9HF-1HNO solution which was used satisfactorily 3 
for preparing the other two alloys. Specimens pickled with both solutions were 

degassed in vacuum (10 

throughout this program for al l  weld blanks. The results of this investigation are 

shown in Figure 16. The recommended solution i s  clearly preferred for the W-25Re- 

30Mo alloy to avoid weld porosity even though the 9HF-1 HNO solution was 

satisfactory for the other materials. 

-5 
torr) at 2000°F prior to welding as was the practice 

3 

Another factor resolved in this evaluation i s  the comparative tendency of powder 

metallurgy alloy vs. arc cast alloy welds to contain porosity. Typical results in 

this respect are shown in  Figure 17. Powder metallurgy W-25Re-30Mo consistently 

displayed a greater tendency towards weld porosity than did the arc cast material. 

The reason for this could not be determined but the trend agrees with that observed 

in the preliminary survey for this program leading to the selection of arc cast rather 

than powder metallurgy tungsten for evaluation. The slight porosity tendency of 

\ue lJc  in y w d e r  matollurav -. Droducts . probably results from the vaporization of minor 

solid impurities during welding. N o  correlation between weld ducti l i ty and porosity 

was demonstrated. Several welds in W-25Re-30Mo were produced with high porosity 

and bend tested without any apparent increase in transition temperature. 

HOT TEARING 

Hot tearing, quite often catastrophic in extent, occurred in gas-tungsten-arc welds 

in the AC W-25Re and the AC W-Re-Mo alloy with sufficient regularity to warrant closer 

examination in  an effort to identify the causes. The problem was serious enough in  the AC 

ternary alloy that full-scale evaluation of GTA welds was not possible due to a lack of 

sound weld metal. 
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Hot tearing i s  not peculiar to welds; rather i t  i s  a problem common to many aspects of 

metallurgical processing. AI though a precise definition of the obtaining mechanisms has 

proven elusive, a definite relationship has been established between the occurrence of hot 

tearing and the existence of a l iquid phase at temperatures well below the solidus tempera- 

ture of the alloy, This situation i s  often predictable based on the equilibrium diagram 

The inobi l i iy  of the l iquid phase to accommodate strains induced by solidification and 

subsequent shrinkage results i n  parting at the l iquid f i l m  region. At first appearance it 

might be expected EB welds would be more subject to this problem than GTA welds due to 

their high cooling rates, However, the instantaneous volume of liquid present and magnitude 

of thermal straining i s  quite small for EB welds and this apparently mitigates the tendency for 

hot tearing e 

(8 ) 

It was previously noted that a high degree of constitutional segregation and subsequent 

depression of the freezing point in weldments i s  expected in the W-Re system (Figure 1). 

This could play two possible roles in the hot tearing noted in W-Re binary alloy welds. 

Should the cooling rate be sufficiently great, the Re-rich phase, i.e., the I ast constituent 

to solidify, could serve to fulf i l l  the liquid f i l m  requirements outlined above and induce hot 

tearing. A more subtle role, also related to the existence of a Re-rich phase, stems from the 

high affinity which Re exhibits for oxygen. Although easily formed, Re207 i s  unstable, 

melting at 565OF and boiling at 685OF, and i s  believed to be responsible for the hot shortness 

which prevents elevated temperature working of Re in air (9 1 . 

The low-level of oxygen in  the binary W-Re (Table 3) and the ultra-clean welding 

procedures followed seem to obviate consideration of the latter mechanism as being 

responsibl E for the observed hot tearing. However, this mechanism seems quite feasible 

as an explanation for the anomalous bend test results noted for tests in air at temperatures 

above -6OOOF. The use of an inert (argon) shield gas eliminated this erratic behavior, 
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t As opposed to the binary alloy the hot tearing of GTA welds i n  the AC W-Re-Mo 

alloy was totally unexpected. First, the amount of constitutional segregation expected 

in this alloy i s  not nearly so great as that expected for the binary W-Re alloy. Hence, the 

possibility of a depressed-me1 ting-point I iquid f i lm  at a critical stage in the sol idification 

i s  not as likely. Second, GTA welds of the PM W-Re-Mo alloy were accomplished without 

a single incident of hot tearing. 

I 

I , 
In an effort to identify the cause($) for this dual behavior a complete review was made 

of the processing histories and the chemical analyses of the AC and PM sheets. This review 

indicated differences in oxygen content (Table 3) for the two products might be responsible 

for the erratic weldability of the AC sheet. The mechanism would be similar to that which 

1 has been observed in welding molybdenum. It has been reported'") and verified" that 

oxygen contents of only 100 ppm (by wt,) in molybdenum have been sufficient to consistently 

lead to hot tearing during welding. This  i s  related to the presence of a continuous film of 

Mo-Moo2 eutectic (me1 ting point - 380OOF) at the grain boundaries for oxygen concentra- 

tions of 100 ppm or more, Fractographic studies(12) indicate the transition from discrete 

oxide particles to a continuous grain boundary f i lm may  occur for oxygen levels as low as 

only 10 to 50 ppm. Accumu1at;on of critical oxygen concentrations could conceivably 

b result from partitioning effects between the sol id and I iquid phases during solidification. 

Evidence which tends to confirm that this mechanism i s  responsible for hot tearing of 

GTA welds i n  the AC W-Re-Mo sheet was obtained by inducing similar behavior in GTA 

welds i n  the PM sheet, Hot tearing had not been noted in the PM product yet severe hot 

tearing was induced in  a series of test welds made in  oxygen-contaminated welding 

atmospheres. Photographs of two of these welds are shown in Figure 18. Immediately below 

each weld i s  a positive print of an x-ray negative of the same weld. The threshold for the 

hot tearing occurred at approximately 500 ppm oxygen in  the welding atmosphere. Attempts 

to more accurately define this behavior by chemical analyses for oxygen pickup in  the weld 

metal met with limited success. 

1 

L 
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500 ppm Oxygen in Weld Atmosphere 

1800 ppm Oxygen in Weld Atmosphere 

FIGURE 18 - GTA Welds in PM W-25Re-30Mo Sheet. Weld 
Atmospheres Contaminated with Oxygen as Indicated 
( Photographs Approx. 1X ; X-Rays Approx. 0.55x 
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Although the oxygen effect hypothesis for this experiment was based on the effect 
I 

of oxygen on hot tear sensitivity in molybdenum, the extension to alloys containing 

tungsten and rhenium seems reasonable due to their similarity in chemical behavior to 

molybdenum, particularly with respect to interstitial elements. 

THERMAL STAB1 Ll TY 

The objective of the 1000 hour aging runs was to determine the effects of long time- 

high temperature exposures on the ducti l i ty o f  the ternary W-Re-Mo alloy. Base metal, EB 

and GTA welds of  the PM sheet were aged while for the AC sheet only base metal and EB 

welds were used. All welds used in the aging study were made using the parameters found 

previously to give welds having optimum ductility. In addition, wherever material availability 

permitted, additional specimens were first aged and subsequently welded, again using 

t 

1 
f 

t 

i 

t optimized weld parameters. 

For single phase alloys, such as the ternary W-Re-Mo alloys evaluated, the effects of 

long time exposures at elevated temperatures are 

growth. In tungsten-base alloys this results in loss of ductility. The proximity of the alloy 

to the alpha-sigma phase boundary (Figure 3) suggests the possibility of an embrittling reaction 

mainly those associated with primary grain 

1 

I due to localized precipitation of sigma phase during aging. To allow for this pssibi l i ty 

three sets of  specimens were aged at 2800'F. One set was tested as aged while the other sets 

were given 1 hour post-age anneals at 32OO0F and 3400 F to dissolve any sigma-phase that 
0 

c may have formed. 

Bend test results pertinent to these efforts are summarized in Table 7. Data for as- 

received PM and AC sheet and PM sheet annealed 1 hour at 28OO0F are included to provide 

information regarding changes in ductility not related to welding. The transition tempera- 

ture for longitudinal (L) and transverse (T) test specimens are indicated as well as the average 

of  these two values. 
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Ductil i ty of the base metal specimens decreased with increasing thermal exposure. 

t 
This was true for both the AC and the PM sheet over the full range of  conditions evaluated. 

Metallographic examination was performed in an effort to determine the cause for this behavior. 

The results, shown in Figure 19 (dashed lines) as recrystallized grain size as a function of 

temperature, indicate grain growth as the mechanism most likely responsible for the loss 

of ductility. Special attention should be directed toward the results found for the PM 

product. This alloy exhibited both normal and secondary grain growth for a l l  aging 

temperatures and hence two curves are shown for these specimens. The volume of the 
1 

I specimen affected by secondary recrystallization (i.e., abnormal grain growth) increased 
0 

with aging temperature such that after 1000 hours at 3000 F only quite small areas remained 

unaffected. To provide additional information regarding this phenomenon a series o f  1 hour 

anneals at 2OO0F intervals from 2200 to 360OOF were given base metal specimens o f  the PM 
I 

I W-Re-Mo alloy. Specimens of the AC W-Re-Mo alloy and the AC W-25Re alloy were 

similarly annealed to provide direct comparisons of thermal response. I These results are also 

included in Figure 19 (solid lines) where the AC binary and ternary alloys are seen to observe 

normal grain growth behavior, i.e., although the average grain size increases the distribution 

of grain sizes remains nearly constant throughout the process. Again, secondary recrystal I iza- 

tion was noted for the PM W-Re-Mo specimen annealed 1 hour at 3600°F(Figure 20). 

t 

Thermal exposure had no discernible effect on the bend ductility of EB and GTA welds 

in the PM sheet or on the ductility of EB welds in the AC sheet. This was found to be true 

for welds made by either sequence, weld-age or age-weld. In view of the complexity o f  

responses possible for the variety of conditions employed i t  i s  evident that the data lends 

itself best to a rationale developed strictly on the basis of grain size. 

1 

The bend transition temperatures leveled of f  with increased thermal exposure. This 

suggests a lower limit of ductility i s  being approached for the W-Re-Mo alloy. Fractures 

in aged PM and AC specimens were invariably intergranular. Probably the greatest con- 

stitutional segregation coupled with minimum transverse grain boundary length, occurs at the 

weld center1 ine. These factors probably combine resulting in high transverse transition 

temperatures, since transverse specimens almost always failed along the weld centerline 

gr a i n bo u nda r i es . 
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19,941 1 Hr. -340OOF 200x 

, 

I 
\ 
.'. 

19,942 1 Hr.-3600°F 200x 

FIGURE 20 - Microstructure of Powder Metallurgy W-25Re-30Mo Sheet Following 
the Indicated 1 Hr. Anneals. Note the Abnormal Grain Growth after 
1 Hr.-3600°F Anneal. 
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IV. CONCLUSIONS 

1) The weldability of unalloyed tungsten i s  marginal because of  its high ductile-to- 

brittle transition temperature in the welded or recrystallized condition. The high melting 

point and low ductility in combination make tungsten susceptible to fai!ure by therrnc! 

shock during welding. Hence, weldability i s  enhanced by high weld preheat. It i s  not 

apparent that use of arc cast tungsten i s  advantageous over powder metal lurgy tungsten except 

for absence of porosity in welds. Post weld annealing was not particularly beneficial in 

improving ductility. 

2) The weldability of W-25Re i s  improved over that o f  unalloyed tungsten because 

of  slightly better as-welded and recrystallized ductility. Improved ductility coupled with 

a lower melting point makes this alloy less susceptible to thermal shock failures. However, 

the W-Re phase relationships are such that this alloy exhibits a tendency toward hot tearing. 

Preheat in welding was not beneficial in improving as-welded ducti l i ty but permitted 

welding at higher welding speeds and, hence, essentially improved weldabil ity. 

A stress relief post weld anneal (256OOF) was beneficial for EB welds. This implied 

high residual stress in E B  welded W-25Re tends to correlate with the thermal shock behavior 

observed for W E B  welds. GTA welds were not improved by stress relief, but instead 

required a solution anneal (327OOF) implying that sigma phase develops at grain boundaries 

during GTA welding. In this respect EB welding was advantageous since embrittlement by 

the sigma phase and hot tearing were observed only in GTA welds. Both the development of 

sigma phase and hot tearing result from constitutional segregation on freezing which i s  

apparently more pronounced in GTA welds. 
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I 

3) The W-25Re-30Mo alloy displayed generally excellent weldability except for an 

extreme sensitivity to oxygen contamination which causes hot tearing. Undesirable levels 

of oxygen contamination occur at a very low level in the base metal making detection 

diff icult. Welding atmospheres, however, can be easily controlled i f  properly monitored 

to eliminate welding as a potential source of contamination. 

A p o s t  weld stress relief was beneficial in improving the ducti l i ty o f  welds in this 

alloy. Otherwise, al l  thermal treatments to which this material was exposed tended to 

normalize ducti l i ty to that of a large grain size recrystallized structure. This trend persisted 

even through 1000 hour anneals at temperatures to 300OOF. 
I 

I On aging this alloy tends to behave quite simplyar a solid solution system. However, 

the powder metallurgy material exhibited secondary recrystal I ization, a metal- 

lurgical instability perhaps brought on by the dissolution of finely dispersed impurity 

precipitates. 

4) In several checks made in this program welds in powder metallurgy product always 
c 

contained porosity whereas arc cast material produced porosity-free welds. 
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FIGURE A24 - Microstructure of Base Metal Areas of EB Welds in 
Powder Metallurgy W-25Re-30Mo Sheet Following 
the Indicated Post Weld Anneals. 
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FIGURE A29 - Bend Test Results on E B  Weld in Powder Metallurgy 
W-25Re-30Mo Sheet Following the Indicated Aging 
Treatment. ( 4t Bend Radius ) 
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19,602 Longitudinal 300X 

I "  

19,601 Transverse 300X 

FIGURE A30 - Microstructure of &-Received Arc Cast W-25Re-30Mo Sheet 

90 



100 

40 

20 

Arc Cast W-25Re-30Mo 
Base Metal 
As-Received 

I I 

I 
&- 

Long. DBTT 
<-32OoF 

Trans. DBTT 
-25OOF 

U 
I I I 

-300 -200 -100 0 

Test Tempera t ure,OF 

FIGURE A31 - Bend Test Results on &-Received Arc Cast 
W-25Re-30Mo Sheet. ( 4t  Bend Radius ) 
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19,661 Weld Center 1 oox 

19,661 W-HAZ 
Interface 

1 oox 

FIGURE A33 - Microstructure o f  GTA Weld 4 in Arc Cast 
W-25Re-30Mo Sheet 
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19,663 EB Weld 1 1 oox 

19,664 EB Weld 2 1 oox 

FIGURE A35 - Microstructures of E B  Welds 1 and  2 in Arc Cast 
W -25Re-30Mo Sheet 
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19,665 EB Weld 3 1 oox 

19,666 EB Weld 4 1 oox 

FIGURE A36 - Microstructures of  E B  Welds 3 and 4 in 
Arc Cast W-25Re-30Mo Sheet 
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19,760 EB Weld 6 1 oox 
1 Hr. -2800OF PWA 

19,761 

FIGURE A38 - I 

EB Weld 7 1 oox 
1 Hr. -3200OF PWA 

Microstructures of Base Metal Areas of EB Welds in 
Arc Cast W-25Re-30Mo Sheet Following Indicated 
Post Weld Anneals. ( Twins in EB Weld 7 are from 
Bend Testing after Annealing .) 
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